The Parkes Pulsar Timing Array Project

R N Manchester
Australia Telescope National Facility, CSIRO Sydney Australia

Summary

• What is a Pulsar Timing Array?
• The Parkes Pulsar Timing Array project
• The new Pulsar Digital Filterbank: PDFB2
• DM variations and implications for the ISM
• Limits on the GW background from pulsar timing
• Future prospects
A Pulsar Timing Array

• A pulsar timing array is a long-term program of frequent precision timing observations of a large sample of pulsars widely distributed on the celestial sphere

• To allow correction for propagation delays, observations at two or more frequencies are required

• Such observations can in principle detect the stochastic gravitational wave background in our Galaxy

 ➢ Gravitational waves passing over the pulsars are uncorrelated

 ➢ Gravitational waves passing over Earth produce a correlated signal in the TOA residuals for all pulsars

• A timing array can also detect instabilities in terrestrial time standards - establish a pulsar timescale - and improve Solar system parameters

 Idea first discussed by Romani (1989) and Foster & Backer (1990)
Clock errors

All pulsars have the same TOA variations: monopole signature

Solar-System ephemeris errors

Dipole signature

Gravitational waves

Quadrupole signature

Can separate these effects provided there is a sufficient number of widely distributed pulsars
Detecting a Stochastic GW Background

Simulation using Parkes Pulsar Timing Array (PPTA) pulsars with GW background from binary black holes in galaxies

(Rick Jenet, George Hobbs)
The Parkes Pulsar Timing Array Project

Collaborators:

- Australia Telescope National Facility, CSIRO
 Dick Manchester, George Hobbs, (Russell Edwards), (David Champion), John Sarkissian, John Reynolds, Mike Kesteven, Grant Hampson, Andrew Brown

- Swinburne University of Technology
 Matthew Bailes, Ramesh Bhat, Willem van Straten, Joris Verbiest, Sarah Burke

- University of Texas, Brownsville
 Rick Jenet

- University of Sydney
 Steve Ord

- National Observatories of China, Beijing
 Xiaopeng You

- Peking University, Beijing
 Kejia Lee

- University of Tasmania
 Aidan Hotan
The PPTA Project: Goals

- To detect gravitational waves of astrophysical origin
- To establish a pulsar-based timescale and to investigate irregularities in terrestrial timescales
- To improve the Solar System ephemeris - detect TNOs?

To achieve these goals we need ~weekly observations of ~20 MSPs over at least five years with TOA precisions of ~100 ns for ~10 pulsars and < 1 µs for rest

- Modelling and detection algorithms for GW signals
- Measurement and correction for interstellar and Solar System propagation effects
- Implementation of radio-frequency interference mitigation techniques
- Development of international collaborations - EPTA, NAPTA, China. Coordinated observations, increased sky coverage, collaboration on analysis and interpretation
Sky Distribution of Millisecond Pulsars

P < 20 ms and not in globular clusters

- Red stars: Parkes TA pulsar
- Yellow circles: P = 2 ms
- Orange circles: P = 5 ms
- Filled: S1400 > 2 mJy
PPTA Pulsars

- 20 MSPs - all in Galactic disk except J1824-2452 (B1821-24) in M28
- Three years of timing data at 2-3 week intervals and at three frequencies
- Backends: WBC (1 GHz bw but limited time and frequency resolution, 2-bit sampling), PDFB1 (256 MHz, 8-bit), CPSR2 (2 x 64 MHz, 2-bit, baseband recording)
- Data uncorrected for DM variations, calibration errors and low-level RFI
- Eight pulsars with rms timing residuals < 1 µs, all < 3.5 µs

Still have a way to go!

<table>
<thead>
<tr>
<th>PSR</th>
<th>Period (ms)</th>
<th>DM (cm⁻³ pc)</th>
<th>Orbital Period (d)</th>
<th>Rms Residual (µs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J0437-4715</td>
<td>5.757</td>
<td>2.65</td>
<td>5.74</td>
<td>0.42</td>
</tr>
<tr>
<td>J0613-0200</td>
<td>3.062</td>
<td>38.78</td>
<td>1.20</td>
<td>0.85</td>
</tr>
<tr>
<td>J0711-6830</td>
<td>5.491</td>
<td>18.41</td>
<td>—</td>
<td>1.80</td>
</tr>
<tr>
<td>J1022+1001</td>
<td>16.453</td>
<td>10.25</td>
<td>7.81</td>
<td>1.73</td>
</tr>
<tr>
<td>J1024-0719</td>
<td>5.162</td>
<td>6.49</td>
<td>—</td>
<td>2.99</td>
</tr>
<tr>
<td>J1045-4509</td>
<td>7.474</td>
<td>58.15</td>
<td>4.08</td>
<td>3.16</td>
</tr>
<tr>
<td>J1600-3053</td>
<td>3.598</td>
<td>52.19</td>
<td>14.34</td>
<td>1.02</td>
</tr>
<tr>
<td>J1603-7202</td>
<td>14.842</td>
<td>38.05</td>
<td>6.31</td>
<td>1.77</td>
</tr>
<tr>
<td>J1643-1224</td>
<td>4.622</td>
<td>62.41</td>
<td>147.02</td>
<td>1.33</td>
</tr>
<tr>
<td>J1713+0747</td>
<td>4.570</td>
<td>15.99</td>
<td>67.83</td>
<td>0.27</td>
</tr>
<tr>
<td>J1730-2304</td>
<td>8.123</td>
<td>9.61</td>
<td>—</td>
<td>1.99</td>
</tr>
<tr>
<td>J1732-5049</td>
<td>5.313</td>
<td>56.84</td>
<td>5.26</td>
<td>2.78</td>
</tr>
<tr>
<td>J1744-1134</td>
<td>4.075</td>
<td>3.14</td>
<td>—</td>
<td>0.57</td>
</tr>
<tr>
<td>J1824-2452</td>
<td>3.054</td>
<td>119.86</td>
<td>—</td>
<td>0.83</td>
</tr>
<tr>
<td>J1857+0943</td>
<td>5.362</td>
<td>13.31</td>
<td>12.33</td>
<td>1.18</td>
</tr>
<tr>
<td>J1909-3744</td>
<td>2.947</td>
<td>10.39</td>
<td>1.53</td>
<td>0.29</td>
</tr>
<tr>
<td>J1939+2134</td>
<td>1.558</td>
<td>71.04</td>
<td>—</td>
<td>0.81</td>
</tr>
<tr>
<td>J2124-3358</td>
<td>4.931</td>
<td>4.62</td>
<td>—</td>
<td>3.33</td>
</tr>
<tr>
<td>J2129-5721</td>
<td>3.726</td>
<td>31.85</td>
<td>6.63</td>
<td>0.66</td>
</tr>
<tr>
<td>J2145-0750</td>
<td>16.052</td>
<td>9.00</td>
<td>6.84</td>
<td>1.11</td>
</tr>
</tbody>
</table>
PDFB2 First Light @ 10cm (PSR B1749-28) - 16 March 2007

Digital Filterbank

• 1 GHz bandwidth, 9-bit sampling, up to 2048 frequency channels
• Based on ATNF CABB board - 7 FPGAs, 2 GB on-board memory
• 4 ms minimum period for 4 poln x 2048 bins x 2048 channels
• Search mode has 1 - 16 bits/sample, integration period 1
 µs - 1 ms
• Baseband mode: Front-end for APSR. Up to 64 contiguous baseband outputs over 1 GHz;
 2, 4 or 8 bits/samp
• Outputs on 16 March, 512 MHz bandwidth
• 1 GHz bandwidth mid-April
• Baseband mode, RFI mitigation (2 boards) ~ June 2007

- Baseband mode
- Outputs over 1 GHz
- Commissioning
- 1 GHz bandwidth
- Baseband mode
Raw PDFB2 spectrum: 512 MHz bw centred at 1550 MHz
Dispersion Measure Variations

- ΔDM from 10/50cm or 20/50cm observation pairs - data smoothed and interpolated
- Variations observed in most of PPTA pulsars,
 ΔDM typically a few 10^{-3} cm$^{-3}$ pc
- Effect of Solar wind observed in pulsars with low ecliptic latitude

Post-fit residuals:
- Uncorrected TOAs
- Corrected TOAs
- Corrected parameters, Uncorrected TOAs
DM Structure Functions

Slope = 2

Slope = 5/3

DISS

(You et al. 2007)

Spectral break

$1 \, \mu s$

$100 \, ns$

$\log_{10}[D_{DM}(\tau)]$

time lag (days)

J1045–4509

inner time-scale
Detecting Gravitational Waves with Pulsars

• Observed pulse periods affected by presence of gravitational waves in Galaxy

• For stochastic GW background, effects at pulsar and Earth are uncorrelated

• With observations of one or two pulsars, can only put limit on strength of stochastic GW background

• Best limits are obtained for GW frequencies \(\sim 1/T \) where \(T \) is length of data span

• Analysis of 8-year sequence of Arecibo observations of PSR B1855+09 gives
 \[\Omega_g = \rho_{GW}/\rho_c < 10^{-7} \]
 (Kaspi et al. 1994, McHugh et al. 1996)

• Extended 17-year data set gives better limit, but non-uniformity makes quantitative analysis difficult
 (Lommen 2001, Damour & Vilenkin 2004)
Current and Future Limits on the Stochastic GW Background

- Arecibo data for PSR B1855+09 (Kaspi et al. 1994) plus recent PPTA data
- Monte Carlo methods used to determine detection limit for stochastic background described by $h_c = A(f/1\text{yr})^\alpha$
 (where $\alpha = -2/3$ for SMBH, ~ -1 for relic radiation, $\sim -7/6$ for cosmic strings)
 - Current limit: $\Omega_{gw}(1/8 \text{ yr}) \sim 2 \times 10^{-8}$
 - For full PPTA (100ns, 5 yr): $\sim 10^{-10}$
- Currently consistent with all SMBH evolutionary models (e.g., Jaffe & Backer 2003; Wyithe & Loeb 2003, Enoki et al. 2004)
- If no detection with full PPTA, all current models ruled out
- Already limiting EOS of matter in epoch of inflation ($w = p/\varepsilon > -1.3$) and tension in cosmic strings (Grishchuk 2005; Damour & Vilenkin 2005)

(Jenet et al. 2006)
A Pulsar Timescale

- Terrestrial time defined by a weighted average of caesium clocks at time centres around the world
- Comparison of TAI with TT(BIPM03) shows variations of amplitude ~1 µs even after trend removed
- Revisions of TT(BIPM) show variations of ~50 ns
- Pulsar timescale is not absolute, but can reveal irregularities in TAI and other terrestrial timescales
- Current best pulsars give a 10-year stability (σ_z) better than TT(NIST) - TT(PTB)
- Full PPTA will define a pulsar timescale with precision of ~50 ns or better at 2-weekly intervals and model long-term trends to 5 ns or better
Future Prospects

• PDFB2 (April 2007) has higher time and frequency resolution than PDFB1 and 4x bw - should improve TOAs by factor of 2-3

• Real-time RFI mitigation (June 2007)

• New 10cm/50cm feed, preamps at 700-764 MHz to avoid worst of digital TV in 50cm band (August 2007)

• APSR: Successor to CPSR2, baseband up to 1 GHz bw (late 2007)

• Hope to continue ~2-weekly observations at Parkes for at least another five years. International collaborations are important!

• MIRANDA is not really competitive with Parkes: similar collecting area but higher Tsys, smaller frequency coverage

• SKA will win with raw sensitivity. Searches will give a much larger sample (>100 field MSPs?)

Reducing systematic errors is key to success!
Summary

- Frequent precision timing observations of many pulsars widely distributed on the celestial sphere constitute a pulsar timing array.
- PTA observations with a data span of at least 5 years can detect GW from astrophysical sources (or rule out many current models).
- The Parkes Pulsar Timing Array (PPTA) project has been timing 20 MSPs every 2-3 weeks since mid-2004. Goal is ~100 ns rms residuals on at least half of the sample; currently have eight with rms residuals < 1 µs.
- Much effort is going into improving instrumentation and data analysis techniques and fostering international collaboration.
- Corrections for DM variations are important and give interesting information about large-scale fluctuations in the interstellar electron density.
- A pulsar-based timescale will have better long-term stability than the current best terrestrial timescales based on atomic clocks.
- Current results put a limit of 2×10^{-8} on Ω_{gw} in the Galaxy, limit the tension in cosmic strings and the EOS in the early Universe.
- SKA will herald a new era in the study of gravitational waves!